Nonconvex optimization using negative curvature within a modified linesearch
نویسندگان
چکیده
This paper describes a new algorithm for the solution of nonconvex unconstrained optimization problems, with the property of converging to points satisfying second-order necessary optimality conditions. The algorithm is based on a procedure which, from two descent directions, a Newton-type direction and a direction of negative curvature, selects in each iteration the linesearch model best adapted to the properties of these directions. The paper also presents results of numerical experiments that illustrate its practical efficiency. 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Computing Modified Newton Directions Using a Partial Cholesky Factorization
The effectiveness of Newton’s method for finding an unconstrained minimizer of a strictly convex twice continuously differentiable function has prompted the proposal of various modified Newton methods for the nonconvex case. Line search modified Newton methods utilize a linear combination of a descent direction and a direction of negative curvature. If these directions are sufficient in a certa...
متن کاملData and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization
In this paper, we report data and experiments related to the research article entitled "An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization" by Caliciotti et al. [1]. In particular, in Caliciotti et al. [1], large scale unconstrained optimization problems are considered by applying linesearch-based truncated Newton methods. In th...
متن کاملA nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based...
متن کاملExploiting Negative Curvature Directions in Linesearch Methods for Unconstrained Optimization
In this paper we consider the deenition of new eecient linesearch algorithms for solving large scale unconstrained optimization problems which exploit the local nonconvexity of the objective function. Existing algorithms of this class compute, at each iteration, two search directions: a Newton-type direction which ensures a global and fast convergence, and a negative curvature direction which e...
متن کاملINSEAN National Research Center for Ships and Marine Systems INSEAN Technical Report 2008-035/rt A nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization: complete results
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 189 شماره
صفحات -
تاریخ انتشار 2008